SPORTS AND SOFT TISSUE INJURIES A GUIDE FOR STUDENTS AND THERAPISTS

Christopher M. Norris

Sports and Soft Tissue Injuries

The fifth edition of the retitled *Sports and Soft Tissue Injuries* sharpens its focus on the treatment of sports injuries, providing the most complete evidence-based guide for physiotherapists, sports therapists and medical practitioners working with athletes.

Opening with chapters that examine the underlying science of tissue healing and principles of rehabilitation, the book employs a systematic approach, with chapters covering each area of the body, from facial through to ankle and foot injuries. Every chapter includes in-depth discussion and guidance on the treatment of common sports injuries through physiotherapeutic modalities, drawing on the author's wealth of personal experience and the latest peer-reviewed research.

A complete pedagogical resource, *Sports and Soft Tissue Injuries* is highly illustrated in full colour, and features a companion website with video examples of therapeutic techniques and a frequently updated blog on current issues in sports injury treatment. It is an important text for students of sports therapy, physiotherapy, sport medicine and athletic training, interesting further reading for sport and exercise science or kinesiology students with an interest in sports injury, and a crucial reference for practising physiotherapists and athletic trainers and the related disciplines.

Christopher M. Norris is a Chartered Physiotherapist (MCSP) and runs his own physiotherapy practice, Norris Health, in Cheshire, UK. He gained an MSc in Exercise Science from the University of Liverpool, UK, and a PhD on spinal rehabilitation from Staffordshire University, UK. He also holds postgraduate certification in Occupational Health, Orthopaedic Medicine and Medical Education.

Sports and Soft Tissue Injuries

A Guide for Students and Therapists

Fifth Edition

Christopher M. Norris

Fifth edition published 2019 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

and by Routledge 711 Third Avenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2019 Christopher M. Norris

The right of Christopher M. Norris to be identified as author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

First edition published by Elsevier 1993 Fourth edition published by Elsevier 2011

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data Names: Norris, Christopher M., author. Title: Sports and soft tissue injuries : a guide for students and therapists / Christopher M. Norris. Other titles: Managing sports injuries Description: Fifth edition. | Milton Park, Abingdon, Oxon ; New York, NY : Routledge, 2018. | Revised edition of: Managing sports injuries : a guide for students and clinicians. 4th ed. Edinburgh : Churchill Livingstone/Elsevier, 2011. | Includes bibliographical references and index. Identifiers: LCCN 2017058565 (print) | LCCN 2017059738 (ebook) | ISBN 9781315101521 (Master e-Book) | ISBN 9781351589321 (Adobe Reader) | ISBN 9781351589314 (ePub3) | ISBN 9781351589307 (Mobipocket) | ISBN 9781138106581 (hbk) | ISBN 9781138106598 (pbk) | ISBN 9781315101521 (ebk) Subjects: LCSH: Sports injuries. Classification: LCC RD97 (ebook) | LCC RD97 .N67 2018 (print) | DDC 617.1/027--dc23

LC record available at https://lccn.loc.gov/2017058565

ISBN: 978-1-138-10658-1 (hbk) ISBN: 978-1-138-10659-8 (pbk) ISBN: 978-1-315-10152-1 (ebk)

Typeset in Univers by Servis Filmsetting Ltd, Stockport, Cheshire

Visit the companion website: www.routledge.com/cw/norris

Contents

List of figures	vi
List of tables	xvi
ist of treatment notes	xix
1 Healing	1
2 Rehabilitation science	59
3 The hip joint	25
4 The knee	83
5 The shin	61
6 The ankle	93
7 The foot	19
8 The lumbar spine	61
9 The thorax and thoracic spine	23
10 The cervical spine	53
I1 The face and head	79
I2 The shoulder	97
I3 The elbow	71
l4 The wrist and hand	95
Figure and table acknowledgements	17
ndex	29

Figure 1.1 Timescale for healing.	2	Figure 1.20 Zones in articular cartilage.	38
Figure 1.2 Inflammatory elements.	3	Figure 1.21 Effects of joint compression on	
Figure 1.3 Vascular changes which occur in		articular cartilage.	39
inflammation.	6	Figure 1.22 Sites of restricted movement	
Figure 1.4 Formation and reabsorption of		in a nerve.	50
tissue fluid.	7	Figure 2.1 General Adaption Syndrome (GAS).	60
Figure 1.5 Visual analogue scales (VAS) used in pain description.	9	Figure 2.2 The fitness continuum.Figure 2.3 Effect of tissue temperature increas	66
Figure 1.6 Nociceptive pathways.	11	due to warm-up.	73
Figure 1.7 Pain neuromatrix.	14	Figure 2.4 The effect of warm-up on oxygen	
Figure 1.8 Comparison between acupuncture		deficit.	73
and injection needles.	16	Figure 2.5 The effect of warm-up on tissue	
Figure 1.9 Needle insertion using plastic		failure.	74
guide tube.	18	Figure 2.6 Relationship between arousal and	
Figure 1.10 Relationship between fibre		performance.	75
orientation and stress-strain response.	22	Figure 2.7 Difference between active and	~~
Figure 1.11 Changing collagen fibre alignment		passive ranges of motion.	82
during healing.	23	Figure 2.8 Hamstring stretch using straight-leg raise (SLR).	83
Figure 1.12 Strength of healing tissue	24		03
following injury.	24	Figure 2.9 Emphasizing the upper portion of the hamstrings.	83
Figure 1.13 Specific soft tissue mobilization (SSTM) of the Achilles.	25	Figure 2.10 Rectus femoris stretch.	83
Figure 1.14 Epiphyseal injuries.	31	Figure 2.11 Upper trapezius stretch.	84
Figure 1.15 Stages of osteochondritis.	31	Figure 2.12 Neural adaptation to stretch	04
Figure 1.16 Stages of fracture healing.	32	training.	90
	32	Figure 2.13 The rating of perceived exertion	00
Figure 1.17 Changes in bone density with age.	34	(RPE) scale.	96
Figure 1.18 Incidence of common	04	Figure 2.14 Open- and closed-chain	
osteoporotic fractures.	34	movements.	100
Figure 1.19 Exercise prescription for		Figure 2.15 Assessing muscle imbalance.	104
osteoporosis.	36	Figure 2.16 Relative stiffness.	105

Figure 2.17 Relative stiffness in the body. Figure 2.18 Muscle types (extended	105
classification).	106
Figure 2.19 Changes in muscle activity with	
increases in speed.	107
Figure 2.20 Muscle length adaptation.	107
Figure 2.21 Effects of immobilizing a muscle in shortened and lengthened positions.	108
Figure 2.22 Trigger points within hyperactive limb muscles.	112
Figure 2.23 Components of proprioception.	114
Figure 3.1 Angulation of the femoral neck.	126
Figure 3.2 Craigs test.	126
Figure 3.3 Bony trabeculae of the upper femur.	127
Figure 3.4 Capsular ligaments of the hip joint.	127
Figure 3.5 X-ray showing myositis ossificans traumatica (MOT).	132
Figure 3.6 Rectus femoris strengthening and	
stretching.	132
Figure 3.7 Rectus femoris tear.	133
Figure 3.8 Biarticular muscles of the leg.	135
Figure 3.9 The slump test.	139
Figure 3.10 The straight-leg slider.	139
Figure 3.11 The Nordic hamstring exercise (NHE).	141
Figure 3.12 Deadlift actions using barbell.	141
Figure 3.13 Single-leg actions.	142
Figure 3.14 Bridging actions.	143
Figure 3.15 Box drop.	144
Figure 3.16. Modifying traditional hamstring stretches.	146
Figure 3.17 Hamstring exercises in closed	
kinetic chain.	147
Figure 3.18 Hip adductor strengthening.	149
Figure 3.19 Supported side bridge using chair.	149
Figure 3.20 Adductor stretching.	150
Figure 3.21 Osteitis pubis.	151
Figure 3.22 Palpation of the groin.	151

05	Figure 3.23 Sliding exercises in (A) frontal	150
00	plane and (B) sagittal plane.	152
06	Figure 3.24 Hip adductor strength, (A) using band and (B) gravity resisted.	153
07	Figure 3.25 Avulsion injury around the hip.	154
07	Figure 3.26 Common sites for avulsion	
	injuries around the hip.	154
80	Figure 3.27 Position of the piriformis muscle.	155
	Figure 3.28 Gluteal stretch.	155
12 14	Figure 3.29 Mechanical differences between male and female pelvis.	156
26	Figure 3.30 Trendelenburg test.	158
26	Figure 3.31 Targeting the ITB.	160
	Figure 3.32 Hip strengthening.	162
27	Figure 3.33 Surface marking of buttock	
27	structures.	164
	Figure 3.34 Trigger points of the buttock.	164
32	Figure 3.35 Cam and pincer impingements.	165
<u></u>	Figure 3.36 FADDIR and FABER tests.	167
32 33	Figure 3.37 Slipped upper femoral epiphysis.	172
35 39	Figure 3.38 Quadrant test using close grip and bodyweight.	173
39	Figure 3.39 Lateral gliding using quadrant grip.	173
41	Figure 3.40 Lateral gliding in crook lying	
41	using seatbelt.	174
42	Figure 3.41 MWM for hip.	174
43 44	Figure 3.42 (A) Longitudinal distraction in loose pack position using seatbelt. (B) Longitudinal hip distraction using	
46	three-point contact.	175
40	Figure 4.1 The Q angle.	183
47	Figure 4.2 Contact areas of the patella at different angles of flexion.	184
49	Figure 4.3 Patellar stress.	185
49 50	Figure 4.4 Characteristic changes in isokinetic evaluation with anterior knee pain.	186
51	Figure 4.5 Closed-chain patellar stability	
51	re-education.	187

Figure 4.6 Malalignment factors in	100
patellofemoral pain.	189
Figure 4.7 Angle of pull of quadriceps onto patella.	189
Figure 4.8 Patellar position.	190
Figure 4.9 Assessing patellar glide using	
zinc oxide taping.	191
Figure 4.10 The A angle.	191
Figure 4.11 Radiographic measurements of patellar position.	191
Figure 4.12 Correction of patellar position using tape.	193
Figure 4.13 Gluteal actions in PFPS	
rehabilitation.	195
Figure 4.14 Surgical procedures used in	100
anterior knee pain treatment.	196 197
Figure 4.15 Test for patellar glide.	197
Figure 4.16 Iliotibial band friction syndrome.	199
Figure 4.17 ITB stretch positions.	201
Figure 4.18 Hip abductor strengthening in ITBS.	202
Figure 4.19 Palpation of medial knee structures.	205
Figure 4.20 Palpation of lateral knee structures.	205
Figure 4.21 Collateral ligament tests:	
(A) valgus, (B) varus and (C) using practitioner	200
support.	206
Figure 4.22 Anterior drawer test.	209
Figure 4.23 The Lachman test and modifications.	209
Figure 4.24 The pivot shift test.	210
Figure 4.25 (A) Structures contributing	
to combined instabilities of the knee (B) Movement directions.	212
Figure 4.26 Staged anterior cruciate ligament (ACL) exercises.	216
Figure 4.27 Closed kinetic chain action	
following anterior cruciate ligament (ACL) repair.	217

9	-	Articular surface pressure vith muscle co-activation.	219
9	latency is the	Reflex hamstring contraction time interval between the splacement and the first	
5		eaction of the hamstrings.	219
1 1	Figure 4.30 I hamstring cor	Rehabilitation of reflex ntraction.	220
1	-	Anterior cruciate ligament (ACL) lative to Lachman test (using	221
3	Figure 4.32 H (B) bow-legge	Knee position: (A) knock-knee; ed.	224
5	-	Hip hinge – angle trunk forwards	
-	excessively.	The second state is a	224
5	0	Thoracic flexion.	224
7		(A) Flat lordosis; (B) XS lordosis.	225
9	-	Posterior sag with posterior nent (PCL) deficient knee.	226
1	advantage of	Alteration in mechanical the knee following posterior nent (PCL) rupture.	226
2	-	Functional testing of the knee.	220
	-	Attachments of the medial	220
5	menisci.		229
5	Figure 4.40	Posterior aspect of the left knee.	229
	Figure 4.41	Perimeniscal plexus.	230
5	-	Movement of the menisci with xtension of the knee.	230
9	Figure 4.43	The effect of cartilage removal	
		ny) on the knee.	231
9		Common meniscal tears.	231
C	Figure 4.45 (grinding test.	(A) McMurray's test. (B) Apley	232
	Figure 4.46	Meniscal abnormalities.	235
2	Figure 4.47	Incidence of jumper's knee.	237
-	•	Exercise therapy for knee	
5	extensor med		239
	•	Abduction/adduction in extension.	
7	Figure 4.50 /	Abduction/adduction in flexion.	245

Figure 4.51 Anteroposterior (AP) glide using	04E	Figure 5.14 X-ray of stress fracture.	272
block. Figure 4.52 Posteroanterior (PA) glide in	245	Figure 5.15 Correct landing action from a jump.	274
crook lying.	246	Figure 5.16 Structural variation in popliteal	274
Figure 4.53 Lateral glide using seatbelt.	246	artery entrapment.	275
Figure 4.54 Capsular stretch.	246	Figure 5.17 Calf taping.	276
Figure 4.55 Joint distraction gripping patient's tibia beneath arm.	247	Figure 5.18 Example massage techniques for the calf.	276
Figure 4.56 Joint distraction using couch		Figure 5.19 Achilles rehabilitation.	277
headboard.	247	Figure 5.20 Contact point of Achilles	
Figure 4.57 The mediopatellar plica.	249	tendon moves downwards as plantarflexion	270
Figure 4.58 Extensive insertion of semimembranosus.	250	increases.	279
	250 252	Figure 5.21 Examination of the Achilles tendon palpation for thickening.	281
Figure 4.59 Baker's cyst. Figure 4.60 Fat pad unloading using taping.	252 253	Figure 5.22 Transverse frictional massage	
Figure 5.1 Compartments of the lower leg.	262	for the Achilles tendon.	282
Figure 5.2 (A) Anterior compartment	202	Figure 5.23 SSTM of the Achilles.	283
syndrome. (B) Deep posterior compartment syndrome. (C) Superficial posterior compartme	nt	Figure 5.24 Calf squeeze (Thompson) test for Achilles tendon rupture.	286
syndrome. (D) Lateral compartment syndrome	. 263	Figure 5.25 Foot alignment by region.	288
Figure 5.3 Medial tibial stress syndrome.	265	Figure 5.26 Achilles bursae.	289
Figure 5.4 Deload taping for anterior shin pain: (A) spiral, (B) strip, (C) K tape.	266	Figure 6.1 Compression forces on the talus during running.	294
Figure 5.5 Muscle stripping technique for tibialis anterior trigger point.	268	Figure 6.2 The ankle ligaments.Figure 6.3 Assessing severity of ankle injury	295
Figure 5.6 Trigger points of the long toe		from swelling.	296
extensors.	268	Figure 6.4 Anterior drawer test.	297
Figure 5.7 Trigger points of the lateral compartment muscles.	268	Figure 6.5 Syndesmosis test.	297
Figure 5.8 Trigger points of the posterior	200	Figure 6.6 Ankle joint mobilizations.	300
compartment.	269	Figure 6.7 Mobilization with movement (MWM) to ankle joint.	300
Figure 5.9 Self-treatment of the tibialis anterior using the heel.	269	Figure 6.8 Hopping patterns in ankle rehabilitation.	302
Figure 5.10 Self-treatment of the peroneus longus using both hands.	269	Figure 6.9 Balance tests for ankle stability.	304
Figure 5.11 Creating more force by using the 'backnobber' apparatus.	270	Figure 6.10 The Chronic Ankle Instability Scale.	306
Figure 5.12 Traditional acupuncture points used in the treatment of shin pain.	270	Figure 6.11 Lateral view of the ankle, showing the os trigonum and Stieda's process.	308
Figure 5.13 Distribution of stress fractures.	271	Figure 6.12 Tendons near the malleoli. Figure 6.13 Heel raise action gripping block.	308 312

Figure 6.14 Arch lift exercise, weightbearing. Figure 6.15 Step down maintaining arch	312
height.	313
Figure 6.16 The tarsal tunnel.	313
Figure 6.17 The subtaloid and mid-tarsal joints.	314
Figure 6.18 Manual therapy of the subtaloid	
joint.	315
Figure 7.1 Weightbearing motion of the subtaloid joint.	320
Figure 7.2 (A) The walk cycle and (B) the run cycle.	322
Figure 7.3 Force acting through the foot during	
walking.	322
Figure 7.4 Phasic muscular activity during	
normal ambulation.	324
Figure 7.5 Wear pattern on sports shoes.	326
Figure 7.6 Femoral and tibial alignment.	327
Figure 7.7 Tibia vara measurement made from standing position.	327
Figure 7.8 Structure of the first	
metatarsophalangeal joint.	328
Figure 7.9 Forced hyperextension causes soft	
tissue damage and possible sesamoid disruption – 'turf toe'.	328
Figure 7.10 Turf toe taping.	329
Figure 7.11 Pressure distribution in (A) non-	
Morton and (B) Morton feet.	330
Figure 7.12 Hallux valgus.	330
Figure 7.13 Plantar fascia structure and action.	333
Figure 7.14 Plantar fascia anatomical dissection.	333
Figure 7.15 Classic low-dye taping.	336
Figure 7.16 Plantar fascia specific taping.	336
Figure 7.17 Plantar fascia stretch.	337
Figure 7.18 High-load training for PF.	338
Figure 7.19 Taping for heel pad.	340
Figure 7.20 Padding for interdigital	0-0
neuroma.	340
Figure 7.21 Freiberg's disease of the	
metatarsal head.	341

Figure 7.22 Metatarsal padding and tape.	342
Figure 7.23 The lateral side of the foot is	
moved around the cuboid, the medial side	
around the navicular cuneiforms.	343
Figure 7.24 Mobilizations of the cuboid bone.	343
Figure 7.25 Longitudinal mobilization of the first ray.	344
Figure 7.26 Ischaemic pressure using a 'plunger' for the plantar fascia.	344
Figure 7.27 Self-treatment in cross-leg sitting using thumbs.	344
Figure 7.28 Ground reaction forces in rearfoot and mid-foot runners.	348
Figure 7.29 Force vector curves for rearfoot and mid-foot runners.	349
Figure 7.30 Parts of the sports shoe.	350
Figure 7.31 Lasts.	351
Figure 7.32 Parts of the sports shoe.	351
Figure 7.33 Effect of leverage in running shoes.	353
Figure 7.34 Stresses produced when the sole is flexed.	353
Figure 7.35 Function of intrinsic musculature in the (A) unshod and (B) shod foot.	355
Figure 8.1 (A) Concentric band of annular fibres. (B) Horizontal section through a disc.	362
Figure 8.2 Intra-articular structures of the lumbar zygapophyseal joints.	364
Figure 8.3 Schmorl's node: herniation of	266
nuclear material through the disc end plate.	366
Figure 8.4 Discal degeneration.	367
Figure 8.5 Relative pressure changes in the third lumbar disc.	367
Figure 8.6 Vertebral movement during flexion.	368
Figure 8.7 Vertebral movement during rotation.	369
Figure 8.8 Directional patterns of end-range	
stress in the lumbar spine.	370
Figure 8.9 Stages of disc herniation.	371
Figure 8.10 Ligaments of the spinal segment.	372

Figure 8.11 The spinal segment as a leverage system.	9 372
Figure 8.12 Effects of straight-leg raising.	377
Figure 8.13 The slump test.	378
Figure 8.14 Extension in lying (EIL)	0,0
procedure.	380
Figure 8.15 Flexion in lying (FIL) procedure.	380
Figure 8.16 Flexion in step standing (FIS).	381
Figure 8.17 Side gliding in standing (SGIS).	382
Figure 8.18 Lumbar mobilization.	383
Figure 8.19 Phases of manipulation.	383
Figure 8.20 'SNAGs' for the lumbar spine.	385
Figure 8.21 The sacroiliac joint.	387
Figure 8.22 Sacroiliac joint stabilization –	
muscle/fascia coupling.	389
Figure 8.23 Sacroiliac joint pain provocation	
tests.	392
Figure 8.24 Leg-length assessment of sacroiliac joint.	392
Figure 8.25 Positional faults affecting the	
sacroiliac joint.	392
Figure 8.26 Muscle energy techniques (MET) for the sacroiliac joint.	393
Figure 8.27 Posterior pelvic pain provocation (P4) test.	394
Figure 8.28 Mobilization of the sacroiliac joint (SIJ).	395
Figure 8.29 (A) Good morning exercise, (B)	000
Deadlift.	396
Figure 8.30 Site of defect in spondylolysis.	396
Figure 8.31 An oblique X-ray of the lumbar spine, which has the appearance of a terrier	
dog.	397
Figure 8.32 Spondylolisthesis of L5 and S1.	398
Figure 8.33 Prone instability test.	400
Figure 8.34 The spinal stabilizing system	
consists of three interrelating subsystems.	400
Figure 8.35 The role of an integrated back stability program in patients with chronic lowe	r
back pain.	405

	Figure 8.36 Lumbar stabilization exercises.	409
2	Figure 8.37 Examples of resistance	
7	exercises.	410
8	Figure 8.38 Components of cognitive functional therapy programme.	411
0	Figure 9.1 Joints between the ribs and	
0	thoracic spine.	423
1	Figure 9.2 Ribcage shape in scoliosis.	425
2	Figure 9.3 Visceral referral areas.	426
3	Figure 9.4 The slump test (long sitting).	428
3	Figure 9.5 Mobilization of an elevated first rib.	430
5 7	Figure 9.6 Mobilization of an elevated second rib.	431
9	Figure 9.7 General rib mobilization for elevation.	431
2	Figure 9.8 Treatment for a depressed first rib using anterior scalene stretch.	431
2	Figure 9.9 Treatment of a depressed second rib using thumb pressure.	431
2	Figure 9.10 Treatment for general rib depression using pisiform grip.	432
3	Figure 9.11 Treatment of anterior rib displacement using side-bending.	432
4	Figure 9.12 Treatment of posterior rib displacement using side flexion.	432
5	Figure 9.13 Treatment of a posterior rib in prone lying.	433
0	Figure 9.14 Thoracic mobilization.	434
6	Figure 9.15 Ribcage movement during breathing.	437
6	0	
	Figure 9.16 Formation of the inguinal canal.	439
7	Figure 9.17 Hernia repair incisions within the inguinal region.	440
8	Figure 9.18 Thoracic outlet syndrome.	444
0	Figure 9.19 Provocative tests for thoracic outlet syndrome.	445
0	Figure 9.20 Thoracic spine mobilization techniques.	447
5	Figure 9.21 Radiographic appearance of Scheuermann's disease.	449

Eiguro 0 22	Exercise therapy for thoracic	
extension.		450
Figure 9.23	Thoracic mobility exercise.	450
Figure 9.24	Resistance exercises for	
the thorax.		451
Figure 10.1	Regions of the cervical spine.	453
Figure 10.2	Effect of head protraction and	
retraction on	cervical spine alignment.	454
Figure 10.3	Surface marking of the spine.	455
Figure 10.4	Structure of the vertebral artery.	456
Figure 10.5	Force line in relation to cervical	
injury during	axial loading.	459
Figure 10.6	Cervical examination tests.	461
Figure 10.7	The upper limb tension test	
(ULTT).		462
Figure 10.8	Craniovertebral ligament tests.	465
Figure 10.9	Diagrammatic representation of	
cranioverteb	ral ligaments.	465
Figure 10.10	Physiological joint	
mobilization.		466
-	Lateral flexion of the cervical	
spine.		466
spine. Figure 10.12	2 Accessory joint mobilization.	467
spine. Figure 10.12 Figure 10.13	Accessory joint mobilization.Hand grip on side of head.	
spine. Figure 10.12 Figure 10.13 Figure 10.14	2 Accessory joint mobilization.	467 468
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput.	 Accessory joint mobilization. Hand grip on side of head. Hand grip using chin 	467 468 468
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput.	Accessory joint mobilization.Hand grip on side of head.	467 468
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput. Figure 10.15	 Accessory joint mobilization. Hand grip on side of head. Hand grip using chin 	467 468 468
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput. Figure 10.15 Figure 10.16 Figure 10.17	 Accessory joint mobilization. Hand grip on side of head. Hand grip using chin Measuring the belt. 	467 468 468 469 469
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput. Figure 10.15 Figure 10.16 Figure 10.17 using belt.	 Accessory joint mobilization. Hand grip on side of head. Hand grip using chin Measuring the belt. Belt position. Anteroposterior (AP) glide 	467 468 468 469
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput. Figure 10.15 Figure 10.16 Figure 10.17 using belt. Figure 10.18	 Accessory joint mobilization. Hand grip on side of head. Hand grip using chin Measuring the belt. Belt position. Anteroposterior (AP) glide Lateral glide using belt. 	467 468 468 469 469
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput. Figure 10.15 Figure 10.15 Figure 10.17 using belt. Figure 10.18 Figure 10.18	 Accessory joint mobilization. Hand grip on side of head. Hand grip using chin Measuring the belt. Belt position. Anteroposterior (AP) glide Lateral glide using belt. Chin tuck exercise using 	467 468 469 469 469 469
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput. Figure 10.15 Figure 10.16 Figure 10.17 using belt. Figure 10.18 Figure 10.18 Figure 10.19 overpressure	 Accessory joint mobilization. Hand grip on side of head. Hand grip using chin Measuring the belt. Belt position. Anteroposterior (AP) glide Lateral glide using belt. Chin tuck exercise using e. 	467 468 469 469 469 469 469
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput. Figure 10.15 Figure 10.16 Figure 10.17 using belt. Figure 10.18 Figure 10.18 Figure 10.20	 Accessory joint mobilization. Hand grip on side of head. Hand grip using chin Measuring the belt. Belt position. Anteroposterior (AP) glide Lateral glide using belt. Chin tuck exercise using e. Enhancing sub-occipital flexion. 	467 468 469 469 469 469
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput. Figure 10.15 Figure 10.15 Figure 10.17 using belt. Figure 10.18 Figure 10.20 Figure 10.20 Figure 10.21	 Accessory joint mobilization. Hand grip on side of head. Hand grip using chin Measuring the belt. Belt position. Anteroposterior (AP) glide Lateral glide using belt. Chin tuck exercise using e. Enhancing sub-occipital flexion. NAGs in treatment of the 	467 468 469 469 469 469 469 469 470 470
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput. Figure 10.16 Figure 10.16 Figure 10.17 using belt. Figure 10.18 Figure 10.18 Figure 10.20 Figure 10.21 cervical region	 Accessory joint mobilization. Hand grip on side of head. Hand grip using chin Measuring the belt. Belt position. Anteroposterior (AP) glide Lateral glide using belt. Chin tuck exercise using Enhancing sub-occipital flexion. NAGs in treatment of the prior. 	467 468 469 469 469 469 469
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput. Figure 10.15 Figure 10.16 Figure 10.17 using belt. Figure 10.18 Figure 10.20 Figure 10.20 Figure 10.22	 Accessory joint mobilization. Hand grip on side of head. Hand grip using chin Measuring the belt. Belt position. Anteroposterior (AP) glide Lateral glide using belt. Chin tuck exercise using e. Enhancing sub-occipital flexion. NAGs in treatment of the processor. SNAGs in treatment of the processor. 	467 468 469 469 469 469 469 469 470 470 470
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput. Figure 10.15 Figure 10.15 Figure 10.17 using belt. Figure 10.18 Figure 10.18 Figure 10.20 Figure 10.21 cervical regio	 Accessory joint mobilization. Hand grip on side of head. Hand grip using chin Measuring the belt. Belt position. Anteroposterior (AP) glide Lateral glide using belt. Chin tuck exercise using e. Enhancing sub-occipital flexion. NAGs in treatment of the on. SNAGs in treatment of the on. 	467 468 469 469 469 469 469 469 470 470
spine. Figure 10.12 Figure 10.13 Figure 10.14 and occiput. Figure 10.15 Figure 10.15 Figure 10.17 using belt. Figure 10.18 Figure 10.18 Figure 10.20 Figure 10.21 cervical regio	 Accessory joint mobilization. Hand grip on side of head. Hand grip using chin Measuring the belt. Belt position. Anteroposterior (AP) glide Lateral glide using belt. Chin tuck exercise using Enhancing sub-occipital flexion. NAGs in treatment of the on. SNAGs in treatment of the on. Muscles attaching to the 	467 468 469 469 469 469 469 469 470 470 470

Figure 10.24 Soft tissue treatment of the	
suboccipital structure.	473
Figure 10.25 Neck flexion test.	474
Figure 10.26 Use of pressure biofeedback unit (PBU) for deep neck flexor re-education.	474
Figure 10.27 Cervical extension in four-point kneeling.	475
Figure 10.28 Occulomotor training in cervical rehabilitation.	476
Figure 10.29 Examples of neck-strengthening exercises.	477
Figure 11.1 Eye and lacrimal apparatus, indicating flow of tears.	480
Figure 11.2 Functional muscle testing of the extraocular muscles.	480
Figure 11.3 Tooth fractures.	483
Figure 11.4 The major bones of the face	403
and head.	485
Figure 11.5 Assessing zygomatic fractures.	486
Figure 11.6 Mobilization techniques for the temporomandibular joint (TMJ).	488
Figure 11.7 Self-stretching procedure for the temporomandibular joint (TMJ).	488
Figure 11.8 Temporomandibular joint (TMJ) home exercise.	488
Figure 11.9 Trigger points in relation to the temporomandibular joint (TMJ).	489
Figure 11.10 Traditional acupuncture points in relation to the temporomandibular joint (TMJ).	489
Figure 11.11 Intracranial haematoma.	493
Figure 11.12 Trigeminocervical nucleus.	494
Figure 11.13 Flexion-rotation test.	495
Figure 12.1 Major palpable structures of the shoulder.	498
Figure 12.2 Rotator cuff muscle action.	499
Figure 12.3 Muscular restraints to anterior	
displacement of the humeral head in an overhead throwing action.	499
Figure 12.4 Muscle force couples which	
create scapular rotation.	502

Figure 12.5 Tests of scapular dyskinesis. Figure 12.6 Stages of throwing.	504 505	Figure 12.29 AP glide the shoulder joint using cupped-hand contact.	530
Figure 12.7 Locking position and quadrant position.	507	Figure 12.30 Soft tissue work in side lying for GIRD.	531
Figure 12.8 Sternoclavicular dislocation. Figure 12.9 Tests for acromioclavicular (AC)	509	Figure 12.31 MWM for glenohumeral abduction.	531
joint dysfunction. Figure 12.10 Acromioclavicular joint taping.	510 513	Figure 12.32 Palpation and treatment of rotator cuff tendon injury.	532
Figure 12.11 Structures close to the clavicle.	515	Figure 12.33 Vascularity of the critical zone.	533
Figure 12.12 Enhancing scapulothoracic stability.	516	Figure 12.34 Resisted rotation training for rotator cuff tendinopathy	534
Figure 12.13 Box taping to facilitate correct scapular alignment.	517	Figure 12.35 Supraspinatus. Figure 12.36 Infraspinatus.	534 535
Figure 12.14 Faciliatory taping. Figure 12.15 Exercises to selectively	517	Figure 12.37 Subscapularis, anterior approach.	535
strengthen the scapulothoracic muscles. Figure 12.16 Assessment of GH internal	518	Figure 12.38 Acupuncture points and trigger points around the scapula.	536
rotation in supine. Figure 12.17 (A) Cross-body stretch with	520	Figure 12.39Biceps tendon subluxation.Figure 12.40Ruptures to muscles in the	537
scapular counter pressure. (B) Sleeper stretches.	520	shoulder region. Figure 12.41 Stanmore triangle used for	538
Figure 12.18 Sternal lift. Figure 12.19 Overhead stretch on gym ball.	525 526	shoulder instability classification. Figure 12.42 Anterior ligaments of the	540
Figure 12.20 Gym ball superman with star		glenohumeral joint. Figure 12.43 Active stabilizers of the	542
arms. Figure 12.21 Pilates dumb waiter with	526	glenohumeral joint. Figure 12.44 Anterior glenohumeral	542
band. Figure 12.22 Abduction with lateral rotation	526	translation. Figure 12.45 (A) Apprehension test – pain/	543
using band. Figure 12.23 Pilates cat paws.	527 527	apprehension increases as an anteriorly directed force is applied. (B) Modified	
Figure 12.24Standing band pull.Figure 12.25Single-arm row with single-leg	528	apprehension test – pain reduces with posterior pressure.	543
stand. Figure 12.26 Cervical mobilization in sitting.	528 529	Figure 12.46 Assessing muscle control of the glenohumeral joint.	544
Figure 12.27 PA glide to thoracic spine using pisiform contact point.	529	Figure 12.47 Eccentric push-up as a global assessment of scapulothoracic stability.	545
Figure 12.28 Thoracic taping applied in supine lying.	530	Figure 12.48 Resisted isometric exercise for glenohumeral stability.	546

Figure 12.49 Closed-chain exercise using partial and full bodyweight.	547
Figure 12.50 Closed-chain shoulder	547
rehabilitation.	549
Figure 12.51 Glenohumeral exercises.	550
Figure 12.52 Proprioceptive taping of the	
shoulder.	551
Figure 12.53 The glenoid labrum.	552
Figure 12.54 Mobilization techniques for frozen shoulder.	י 560
Figure 12.55 Exercise therapy for adhesive capsulitis.	561
Figure 12.56 Combining shoulder lateral	
rotation and abduction with scapular	
stability.	562
Figure 12.57 Full-range stretching exercises for the shoulder.	562
Figure 12.58 Weight-training actions for the	
shoulder.	563
Figure 12.59 Entrapment neuropathy in the	
shoulder.	564
Figure 13.1 Articulations forming the elbow	
joint.	571
Figure 13.2 (A) Carrying angle. (B) Lateral orientation. (C) Most common configuration of the trochlear groove. (D) Medial	
orientation.	572
Figure 13.3 Contact areas at different elbow	
positions.	573
Figure 13.4 Constraints to (A) flexion and (B) extension.	574
Figure 13.5 (A) Abduction; (B) adduction; (C) flexion–abduction; (D) flexion–adduction; (E) pronation; (F) supination; (G) compression;	
(H) distraction.	575
Figure 13.6 Palpation of tennis elbow.	576
Figure 13.7 Deload taping.	578
Figure 13.8 Exercise therapy for tennis elbow.	579
Figure 13.9 Manual therapy for tennis	
elbow.	580

Figure 13.10 Radial nerve neurodynamic	
treatment.	582
Figure 13.11 Tennis elbow treatment.	583
Figure 13.12 Hand measurement to	
determine proper grip handle size.	584
Figure 13.13 Forces on the elbow during	
throwing.	585
Figure 13.14 Palpation of the posterior elbow.	586
Figure 13.15 Triangular relation of	
epicondyles and olecranon with elbow	500
flexion.	589
Figure 13.16 Nerve compression in the elbow.	591
	595
Figure 14.1 The joints of the wrist.	595
Figure 14.2 The capsular and collateral palmer ligaments of the radiocarpal joint.	596
Figure 14.3 Transverse arch of the wrist.	596
Figure 14.4 Grip force with changing	550
wrist position.	597
Figure 14.5 The wrist showing the	
scaphoid bone.	599
Figure 14.6 Classification of scaphoid	
fracture.	600
Figure 14.7 Lunate dislocation injury occurs	
when the radius forces the lunate in a palmar	004
direction, (B) resulting in dislocation.	601
Figure 14.8 Examples of wrist mobilization.	604
Figure 14.9 Nerve compression in the wrist.	604
Figure 14.10 Thumb tendinitis.	607
Figure 14.11 Bennett's fracture displaced	
proximally by the pull of the abductor pollicis longus.	609
Figure 14.12 Hyperextension injury of the	003
finger.	609
Figure 14.13 Dislocations of the proximal	000
interphalangeal joint.	610
Figure 14.14 Interphalangeal joint of the	
finger.	610
Figure 14.15 Results of injury to the	
extensor tendon mechanism.	611

Figure 14.16 Finger pulleys.	612	Figure 14.19 Autotherapy wrist	
Figure 14.17 Effect of crimp (cling) grip		mobilizations.	614
on finger tendons.	612	Figure 14.20 Wrist abduction/adduction	
Figure 14.18 Finger taping for the prevention		using a modified dumb-bell.	614
of 'rock climber's finger'.	613		

List of tables

Table 1.1 Pain descriptions and related	
structures	8
Table 1.2 Red flags in sport examination	
indicating medical investigation	ç
Table 1.3 Sensory nerve fibre types	11
Table 1.4 Typical signs of central	
sensitization (CS)	16
Table 1.5 Factors slowing healing rate	23
Table 1.6 A systematic analysis of X-rays,	
using the ABCs mnemonic	29
Table 1.7 The osteochondroses	32
Table 1.8 Classification of osteoporosis	35
Table 1.9 Management of articular cartilage	
degeneration	40
Table 1.10 Tissue changes in knee arthritis	41
Table 1.11 The capsular patterns	42
Table 1.12 Ligament injuries	43
Table 1.13 Munich classification of muscle	
injuries in sport	44
Table 1.14 Common sites for avulsion injuries	45
Table 1.15 Phases of tendinopathy	48
Table 1.16 Fascial pathways	51
Table 1.17 Clinical examination	54
Table 1.18 End-feel	55
Table 2.1 Training variables using the FITT	
mnemonic	61
Table 2.2 Common trigger of overtraining	
syndrome	63
Table 2.3 Symptoms of overtraining syndrome	64
Table 2.4 Daily training log	64

	Table 2.5 ACSM guidelines for maintaining	
8	fitness in apparently healthy individuals	66
	Table 2.6 Benefits of regular exercise	66
9	Table 2.7 Fitness component checklist	67
1	Table 2.8 Characteristics of exercise addiction	70
	Table 2.9 Example activities for neuromuscular	
6	training (NMT) as a warm-up	70
3	Table 2.10 Warm-up mechanisms	72
_	Table 2.11 Factors limiting range of motion	
9	at a joint	79
2	Table 2.12 Muscle reflexes and stretching	79
5	Table 2.13 Summary of stretching techniques	81
~	Table 2.14 Adaptations to resistance training	86
0	Table 2.15 Needs analysis in strength and	
1	conditioning	92
2	Table 2.16 Proposed neuromuscular	
3	adaptations to plyometric training	97
	Table 2.17 Plyometric exercises	97
4	Table 2.18 Methods of progressing overload	98
5	Table 2.19 Factors associated with	
8	delayed-onset muscle soreness (DOMS)	102
1		103
4	Table 2.21 Methods of treating trigger points	113
5	Table 2.22 Factors contributing to reduced	
	proprioception following injury	113
1	Table 2.23 Proprioceptive training	115
	Table 2.24 Learning motor skills	116
3	Table 3.1 Muscle imbalances around the hip	130
4	Table 3.2 Multifactorial components of	
4	hamstring rehabilitation	138

List of tables

Table 3.3 Percentage of strength relative to	
quadriceps at 100%	144
Table 3.4 Progressive walk/run programme	
for hamstring rehabilitation	145
Table 3.5 Hamstring lengthening exercise	
protocol (L-protocol)	146
Table 3.6 Grading of osteitis pubis	152
Table 3.7 Muscle layers of the lateral hip	156
Table 3.8 Bursae around the greatertrochanter (GT)	157
Table 3.9 Optimization of the Trendelenburg	
test in the clinic	159
Table 3.10 Personalized hip therapy exercise	
programme for FAI	168
Table 3.11 Example exercises used in the	
rehabilitation of FAI	168
Table 3.12 Key exercises used in the	
management of anterior hip impingement	
Table 4.1 Source of pain in PFPS	186
Table 4.2 Factors associated with patella	
femoral pain syndrome (PFPS)	186
Table 4.3 Evaluation of muscle tightness	
Table 4.4 Guidelines for medial collateral	
ligament rehabilitation	207
Table 4.5 Manual laxity tests of the knee	211
Table 4.6 Example rehabilitation protocolfollowing ACL reconstruction	215
Table 4.7 Stages of ACL rehabilitation	218
Table 4.8 Qualitative analysis of single-leg	210
loading score (QASLS)	218
Table 4.9 Proprioceptive training to preventACL injuries in soccer players	221
Table 4.10 Neuromuscular training for knee	
injury prevention	222
Table 4.11 Common errors when performing	
a squat	223
Table 4.12 Follow-up after complete	
meniscectomy	234
Table 4.13 Example rehabilitation protocol	
following meniscus repair	235

	Table 4.14 Main pathological features of	
44	patellar tendinopathy	238
	Table 4.15 Criteria for autologous	
45	chondrocyte implantation (ACI)	242
	Table 4.16 Bursae around the knee	251
46	Table 5.1 Compartments of the lower leg	261
52	Table 5.2 Structures affected in	
56	compartment syndrome	262
	Table 5.3 Aspects of running re-education	
57		267
-0	Table 5.4 Pain classification	272
59	Table 5.5 Structures to consider in	070
68	differential diagnosis of Achilles tendon pain	278
00	Table 5.6 Phases of tendinopathy	280
68	Table 5.7 Example post-surgical rehabilitationprotocol following Achilles tendon repair	287
	Table 6.1 Role of the collateral ligaments	~ ~ -
86	in ankle stability	295
50	Table 6.2 Guidelines for rehabilitation ofankle sprain	301
86	Table 6.3 Measurement of ankle stability	304
	Table 6.4 Indications of chronic ankle instability (CAI)	305
07	Table 6.5 Posterior tibial tendon dysfunction	
11	(PTTD) categorization	310
	Table 7.1 Biomechanical changes in the	
15	rearfoot and forefoot	325
18	Table 7.2 Plantar fasciitis nomenclature anddifferential diagnosis	332
18	Table 7.3 Factors associated with thedevelopment of CPHP	334
21	Table 7.4 Pathological changes seen inplantar fasciitis	335
22	Table 7.5 Plantar heel pain late-stage rehab	339
23	Table 8.1 Lower back pain: the scope of the problem	361
	Table 8.2 Back pain in specific sports	362
34	Table 8.3 Effect of exercise on the spinal	
	disc	365

List of tables

Table 8.4 Common myths in the	
management of back pain in sport	373
Table 8.5 Diagnostic triage	375
Table 8.6 Movement of the sacroiliac joint(SIJ)	386
Table 8.7 Starting positions for abdominal	
hollowing	390
Table 8.8 Evaluating lumbar instability	399
Table 8.9 Key principles of sensorimotor control	403
Table 8.10 The role of motor control	
training in the rehabilitation of the Lumbar	
spine	404
Table 8.11 Interacting factors in CLBP	411
Table 8.12 Pain concepts	412
Table 8.13 Functional training exercise	415
Table 8.14 Neuroscience-based rehabilitation	
for chronic lower back pain	416
Table 8.15 Integrated back stability model	416
Table 9.1 Red flags in the examination ofthe thoracic spine	426
Table 9.2 Palpation of the thoracic	
vertebrae	427
Table 9.3 Rib palpation	427
Table 9.4 Classification of dysfunctionalbreathing	437
Table 9.5 Sportsman's hernia: tissue	
pathology and history	440
Table 9.6 Muscle balance exercises for sports hernia	442
Table 9.7 Example rehabilitation programmeof inguinal disruption (ID).	443
Table 9.8 Postural presentation in thoracic	
outlet syndrome	444
Table 10.1 Symptoms of vertebrobasilarinsufficiency (VBI)	457
Table 10.2 Differential diagnosis in cervical	
spine examination	458
Table 10.3 Clinical test cluster fordetermination of cervical radiculopathy	463

3	Table 10.4 Posterior muscle layers ofthe neck	473
5	Table 10.5 Correction of movement faultsduring craniocervical flexion	475
6	Table 11.1 Indications for ophthalmic referralfollowing eye injury	480
))	Table 11.2 Common eye symptomsencountered in sport	481
3	Table 11.3 Common features of sports-related concussion (SRC)	491
	Table 11.4 Factors to be aware of followinga concussion incident	491
ł	Table 11.5 The Glasgow coma scale	492
	Table 12.1 Movement of the arm into	
2	abduction	500
5	Table 12.2 Red flags in shoulder assessment	506
	Table 12.3 Classification of acromioclavicular	
6	injuries	512
6	Table 12.4 Factors associated with	
	subacromial compression	519
6	Table 12.5 Common clinical tests for SAIS	522
	Table 12.6 SSMP components	523
7	Table 12.7 Classification of shoulder	
7	instability	540
	Table 12.8 Typical clinical finding of polar	E 4 4
7	instability types	541
	Table 12.9 Stability of the glenohumeral joint	541
)	Table 12.10 Proprioceptive training of the	
	shoulder	547
2	Table 12.11 Use of surface EMG inrehabilitation of anterior instability of	
3	the shoulder	551
)	Table 12.12 SLAP lesion types	553
ļ	Table 12.13 Guidelines for rehabilitation	000
r	following anterior glenohumeral dislocation	556
7	Table 12.14 Stages of frozen shoulder	557
	Table 12.15 Pathological and histological	
3	changes in frozen shoulder	558
	Table 12.16 Movement therapy for adhesive	
3	capsulitis	560

xviii

Table 13.1 Percentage contribution of elbow		Table 13.3 Throwing injuries to the elbow	585
structures to stability of the joint	574	Table 14.1 Assessing motion of individual	
Table 13.2 General causes of tennis elbow	576	carpal joints	598

List of treatment notes

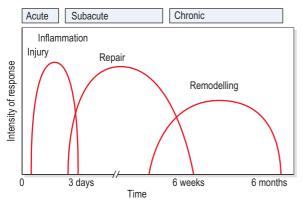
1.1	Medication used in soft tissue injury	4
1.2	Pain description in examination	8
1.3	Dry needling	16
1.4	Management of acute soft tissue injury	19
1.5	Influencing the mechanical properties of healing tissue	24
1.6	Diagnostic imaging	28
1.7	Training the fascia	51
1.8	Principles of physical examination	53
2.1	Overtraining syndrome	63
2.2	Tissue homeostasis	68
2.3	Warm-up technique	76
2.4	Passive stretching	82
2.5	Periodization	94
2.6	Historical resistance training methods	99
2.7	How subjects learn skilled movements	116
3.1	Muscle imbalance around the hip	128
3.2	Two joint muscles	135
3.3	Targeting the ITB	160
3.4	Trigger point treatment of buttock structures	163
3.5	Altered movement quality and hip impingement	169
3.6	Manual therapy techniques to the hip	173
4.1	The squat exercise in knee rehabilitation	222
4.2	Manual therapy techniques for the knee	244
5.1	Manual therapy for shin pain	268
5.2	Treatment of gastrocnemius tear	275

5.3	Early work on eccentric training	284
7.1	Manual therapy techniques for the foot	343
7.2	Fitting a running shoe	354
8.1	Lumbar stabilization starting positions	390
8.2	Trunk muscle changes in lower back pain	401
8.3	Stability training emphasizing muscle isolation	407
8.4	Neuroscience education in lower back rehabilitation	412
8.5	Neuroscience approach to treating CLBP	415
9.1	Manual therapy techniques for rib displacement	430
9.2	Changes to breathing mechanics	436
10.1	Surface marking of the cervicothoracic region	454
10.2	Seatbelt techniques for cervical traction	468
11.1	Surface examination of the eye	480
11.2	Dry needling in the treatment of TMJ pain	489
12.1	Restoration of scapulothoracic stability	516
12.2	Shoulder symptom modification procedure	523
12.3	Example rehabilitation exercises used when managing subacromial impingement syndrome (SAIS)	525
12.4	Rotator cuff trigger points	534
	Trigger points and acupuncture points	004
10.1	in the treatment of tennis elbow	583

CHAPTER

Healing

Following injury, tissue which has been damaged must be replaced by living material. Two processes are possible, regeneration and repair. With *regeneration*, tissue is replaced by the proliferation of surrounding undamaged tissue. Therapy to produce this effect is currently in its infancy with stem cell therapy. With repair, however, lost material is replaced by granulation tissue which matures into a scar (Watson 2016), a process which most commonly reflects healing seen within the field of sports and soft tissue injury.


Therapists need to have knowledge of the processes which occur at each successive stage of healing to be able to select the treatment technique which is most appropriate for the stage the subject is presenting. A technique aimed at reducing the formation of swelling, for example, would be inappropriate when swelling had stopped forming and adhesions were the problem. Similarly, a manual treatment designed to mobilize soft tissue may not be helpful when inflammation is still forming and the tissues are highly irritable.

The stages of healing are, to a large extent, purely a convenience of description, since each stage runs into another in a continuum, the previous stage acting to initiate the next. The term *phasing* rather than separate stages may be more suitable. Traditionally, the initial tissue response has been described as *inflammation*, but some authors see inflammation as a response separate to the processes occurring at the time of injury. Both injury and inflammation may be viewed as a reactive phase of injury, with the classical inflammatory period preceded by a short (tenminute) period before the inflammatory mechanism is activated. The reactive phase may also be viewed as a lag phase (Hunter 1998), before the strength of the healing tissues begins to change. In any traumatic injury the initial stage is *bleeding*, which is the precursor for the inflammatory cascade seen as both a vascular and cellular response.

The second stage of healing has been variously called repair, proliferation and regeneration. The tertiary stage is normally termed remodelling. The terms injury, inflammation, repair and remodelling will be used in this text

When describing the stages of healing, the terms acute, subacute and chronic are helpful. The acute stage (up to 48 hours following injury) is generally the stage of inflammation. The subacute stage, occurring between 14 and 21 days after injury, is the stage of repair. The chronic stage (after 21 days) may be viewed as the stage of remodelling. The term chronic is also sometimes used to describe self-perpetuating inflammation, where

1 Healing

Figure 1.1 Timescale for healing. From Oakes, B.W. (1992) The classification of injuries and mechanisms of injury, repair and healing. In *Textbook of Science and Medicine in Sport* (eds J. Bloomfield, P.A. Fricker and K.D. Fitch). Blackwell Scientific Publications, Melbourne. With permission.

the inflammatory process has restarted due to disruption or persistent irritation of the healing tissues. The total healing process occurs over a continuum, shown in Fig. 1.1.

Keypoint

Treatment must be adapted to the stages of healing, which are injury, inflammation, repair and remodelling.

Injury

This stage represents the tissue effects at the time of injury, before the inflammatory process is activated. With tissue damage, chemical and mechanical changes are seen. Local blood vessels are disrupted causing a cessation in oxygen to the cells they perfused. These cells die and their lysosome membranes disintegrate, releasing the hydrolysing enzymes the lysosomes contained. The release of these enzymes has a twofold effect. First they begin to break down the dead cells themselves, and second, they release histamines and kinins which have an effect on both the live cells nearby and the local blood capillary network.

The disruption of the blood vessels which caused cell death also causes local bleeding (extravasated blood). More vascular tissue such as muscle will bleed more than less vascular tissue such as ligament. On average, bleeding following soft tissue injury stops within four to six hours (Watson 2016). The red blood cells break down, leaving cellular debris and free haemoglobin. The blood platelets release the enzyme thrombin, which changes fibrinogen into fibrin. The fibrin in turn is deposited as a meshwork around the area (a process known as walling off). The dead cells intertwine in the meshwork, forming a blood clot. This network contains the damaged area.

The changes occurring at injury are affected by age. Intramuscular bleeding, and therefore haemorrhage formation, is more profuse in individuals over 30 years of age. The amount of bleeding which occurs will be partially dependent on the vascularity of the injured tissues. A fitter individual is likely to have muscle tissue which is more highly vascularized, and therefore greater bleeding will occur with muscle injury. In addition, exercise itself will affect gross tissue responses. Muscle blood flow is greatly increased through dilatation of the capillary bed, and again bleeding subsequent to injury will be greater.

Keypoint

The tissues of an active individual are more highly vascularized than those of an inactive subject. The subject's tissues will therefore bleed more during injury, and bruising will be more noticeable.

Inflammation

The next phase in the healing sequence is that of inflammation, summarized in Fig. 1.2. This may last from ten minutes to several days, depending on the amount of tissue damage which has occurred, but generally reaches its peak by one to three days.

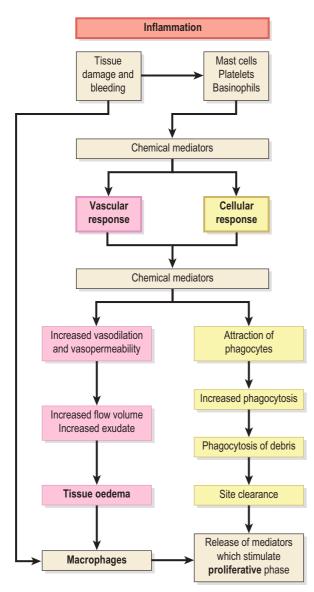


Figure 1.2 Inflammatory elements.

Vascular and chemical cascades occur in parallel to drive the inflammatory process.

Definition:

A *chemical cascade* (signalling cascade) is a series of chemical reactions. As one reaches its completion, it triggers the next in a type of 'chain reaction'.

The inflammatory response to soft tissue injury is much the same regardless of the nature of the injuring agent or the location of the injury itself. Inflammation is not simply a feature of soft tissue injuries, but also occurs when the body is infected, in immune reactions and with infarction. Some of the characteristics of the inflammatory response seen with soft tissue injury may be viewed as excessive and better suited to dealing with infection than healing injury.

The cardinal signs of inflammation are heat (*calor*), redness (*rubor*), swelling (*tumor*) and pain (*dolor*). These in turn give rise to the so-called fifth sign of inflammation: disturbance of function of the affected tissues (*functio laesa*).

Keypoint

Inflammation is often seen as undesirable. However, inflammation is the first stage of healing and so is a vital step on the road to recovery. The aim should be to prevent excessive inflammation and move the subject on through the phases of healing towards eventual full function.

Heat and redness

Heat and redness take a number of hours to develop, and are due to the opening of local blood capillaries and the resultant increased blood flow. Chemical and mechanical changes, initiated by injury, are responsible for the changes in blood flow.

Chemically, a number of substances act as mediators in the inflammatory process. The amines, including histamine and 5-hydroxytryptamine (5-HT or serotonin) are released from mast cells, red blood cells and platelets in the damaged capillaries and cause vessel dilatation and increased permeability. Kinins (physiologically active polypeptides) cause an increase in vascular permeability and stimulate the contraction of smooth muscle. They are found normally in an inactive state as kininogens. These

1 Healing

in turn are activated by the enzyme plasmin, and degraded by kininases.

The initial vasodilatation is maintained by prostaglandins. These are one of the arachidonic acid derivatives, formed from cell membrane phospholipids when cell damage occurs, and released when the kinin system is activated. The drugs aspirin and indometacin act to inhibit this change – hence their use as anti-inflammatory agents in sports and soft tissue injury treatment (see Treatment Note 1.1). The prostaglandins E1 and E2 will stimulate nociceptors and also promote vasodilatation, blood-vessel permeability and lymph flow.

The complement system, consisting of a number of serum proteins circulating in an inactive form, is activated and has a direct effect on the cell membrane as well as helping to maintain vasodilatation. Various complement products are involved, and these are activated in sequence. Finally, polymorphs produce leukotrienes, which are themselves derived from arachidonic acid, help the kinins maintain vessel permeability.

Treatment note 1.1 Medication used in soft tissue injury

Although inflammation is an essential part of the healing process, sometimes it can be excessive. Anti-inflammatory treatments are designed to limit inflammation and interfere with the chemical processes described above. Two groups of drugs are generally used in the treatment of soft tissue injuries in this respect: corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDS). Analgesics are used to limit pain, and may be used in isolation or together with anti-inflammatories.

Non-steroidal anti-inflammatory drugs

NSAIDS have both anti-inflammatory and pain relieving (analgesic) properties, causing both local (peripheral) and mild central effects. They inhibit the cyclo-oxygenase (COX) system, which has an important function in the cascade of chemicals driving the inflammatory process (see above) and works to block the production of prostaglandin. Two types are generally used, COX-1 and COX-2. As COX-1 also has an important function on the gastric mucosa, COX-1 inhibitors can lead to gastritis, and with long-term usage ulceration. COX-2 inhibitors have fewer effects on the gastric mucosa and so are better tolerated, but can increase the risk of thrombosis. NSAIDS are also available as creams and patches which can be used for superficial injury such as muscle

injuries, contusions, and knee arthritis. Drugs such as *aspirin*, *Volterol*, *Brufen* and *Naprosyn* are common oral NSAIDS.

NSAIDS can inhibit protein synthesis and affect satellite cell activity, detrimentally changing muscle repair (see Chapter 2). They may alter collagen formation and fibroblast proliferation, so long-term usage should generally be avoided. In addition, tenocyte action during tendon repair may be negatively affected, but pain reduced (Pollock 2017). The role of prostaglandins in bone repair is also a potential concern with NSAID usage, as osteoblast activity may be impaired, delaying callus maturation in bone (Wheeler and Batt 2005).

Targeting pain

Painkillers (analgesics) work on the peripheral or central nervous systems. Drugs such as *paracetamol* have painkilling (analgesic) and feverreducing (antipyretic) effects, but do not generally reduce inflammation. This type of drug works by blocking a type of cell membrane receptor called a cannabinoid receptor, which drugs such as cannabis work on. *Codeine, morphine* and *ketamine* are more powerful painkillers and are opiates. They may be taken alone or combined with paracetamol. Opiate drugs are generally derived from the opium poppy or its synthetic equivalent (one of which is heroin) and are

Treatment note 1.1 *continued*

psychoactive compounds – ones which alter mood or consciousness. As such, one of their side effects is nausea and dizziness. Where pain is from a peripheral nociceptive stimulus, NSAIDS may be effective at targeting pain indirectly by reducing the inflammatory chemicals driving nociception. Their painkilling effect is generally non-addictive, unlike the narcotic group of painkilling drugs such as *morphine*, above.

Where neuropathic pain and central sensitization occurs, medications such as *Gabapentin* (an anti-epileptic) and *Pregabalin* may be chosen as these block the nociceptive signal by binding to the calcium channels on the nociceptor and reducing neurotransmitter release. These drugs can induce fatigue and have a sedative effect so subjects should be aware of this. Locally, counterirritant effects may be provided by massage or self-applied rubifacient rubs. These may reduce nociceptor transmission by depleting neurotransmitter activity.

Corticosteroids

Corticosteroids (such as *triamcinolone* and *hydrocortisone*) also reduce inflammation, but rather than targeting prostaglandin, they reduce activation of leucocytes and alter vascular permeability. These drugs tend to be injected to the site of a pathology and, although generally

Blood-flow changes also occur through mechanical alterations initiated by injury. Normally, the blood flow in the venules, in particular, is axial. The large blood proteins stay in the centre of the vessel, and the plasmatic stream, which has a lower viscosity, is on the outside in contact with the vessel walls. This configuration reduces peripheral resistance and aids blood flow.

In a damaged capillary, however, fluid is lost and so the axial flow slows. Marginalization occurs as the slower flow rate allows white blood cells to move into the plasmatic zone and adhere to the vessel walls. This, in turn, reduces the effective at reducing both pain and inflammation in the short term, can have a number of negative effects. Inhibition of collagen synthesis may occur, impacting on tendon healing, an effect most studied in the case of tendinopathy presenting as tennis elbow (Coombes et al. 2010). Injecting into a contained region such as a joint can reduce synovial inflammation. However, cartilage matrix degradation may occur with prolonged usage in weight-bearing joints. Combining a corticosteroid with a local anaesthetic followed by a quick return to running is said to be detrimental to articular cartilage (Pollock 2017). Fat atrophy and alteration of skin pigmentation can also occur as a result of corticosteroid injection.

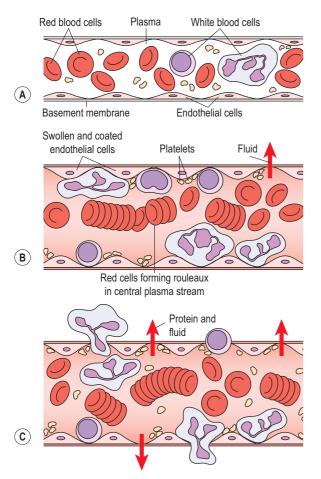
References

Coombes, B.K., Bisset, L., Vicenzino, B. (2010) 'Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials'. *Lancet* 376(9754):1751–1767.

Pollock, N. (2017) 'Therapeutic medication in musculoskeletal injury'. In: Brukner, P., Clarsen, B., Cooks, J. et al. (eds) *Clinical Sports Medicine*.

Wheeler P., Batt, M.E. (2005) 'Do non-steroidal antiinflammatory drugs adversely affect stress fracture healing? A short review'. *British Journal of Sports Medicine* 39(2):65–69.

lubricating effect of this layer and slows blood flow. The walls themselves become covered with a gelatinous layer, as endothelium changes occur.


Definition

Marginalization is the build-up of white blood cells (leukocytes) on blood-vessel walls at the site of an injury.

Some four hours after injury, diapedesis occurs as the white cells pass through the vessel walls into

1 Healing

the damaged tissue. The endothelial cells of the vessel contract, pulling away from each other and leaving gaps through which fluids and blood cells can escape (Fig. 1.3). Various substances, including histamine, kinins and complement factors, have been shown to produce this effect (Walter and Israel 1987).

Figure 1.3 Vascular changes which occur in inflammation. (A) Blood vessel starts to dilate. (B) Dilated vessel showing marginalization. (C) White blood cells and fluid pass into tissue. From Evans, D.M.D. (1990a) Inflammation and healing. In *Cash's Textbook of General Medical and Surgical Conditions for Physiotherapists* (ed. P.A. Downie), 2nd edn. Faber and Faber, London. With permission.

Swelling

The normal pressure gradients inside and outside the capillary balance the flow of fluid leaving and entering the vessel (Fig. 1.4). The capillary membrane is permeable to water, and so water will be driven out into the interstitial fluid. However, because the tissue fluids usually contain a small amount of protein, and the blood contains a large amount, an osmotic pressure is created, which tends to suck water back from the tissue fluid and into the capillary once more. The magnitude of this osmotic pressure is roughly 25 mmHg. At the arteriole end of the capillary, the blood pressure (32 mmHa) exceeds the osmotic pressure and so tissue fluid is formed. At the venous end of the capillary, the blood pressure has reduced (12 mmHg) and so, because the osmotic pressure now exceeds this value, tissue fluid is reabsorbed back into the capillary.

During inflammation, the capillary bed opens and blood flow increases (heat and redness). The larger blood volume causes a parallel increase in blood pressure. Coupled with this, the tissue fluid now contains a large amount of protein, which has poured out from the more permeable blood vessels. This increased protein concentration causes a substantial rise in osmotic pressure, and this, together with the larger blood pressure in the capillary, forces fluid out into the interstitium, causing swelling.

Protein exudation in mild inflammation occurs from the venules only and is probably mediated by histamine. More severe inflammation, as a result of trauma, results in protein exudation from damaged capillaries as well.

During inflammation, lymphatic vessels open up and assist in the removal of excess fluid and protein. The lymph vessels are blind-ending capillaries which have gaps in their endothelial walls enabling protein molecules to move through easily. The lymph vessels lie within the tissue spaces, and have valves preventing the backward movement of fluid. Muscular contraction causes a pumping action on the lymph vessels and the

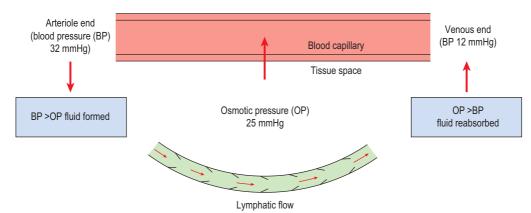


Figure 1.4 Formation and reabsorption of tissue fluid.

excess tissue fluid is removed to the subclavian veins in the neck.

Pain

Pain is the result of both sensory and emotional experiences, and is associated with tissue damage or the probability that damage will occur. It serves as a warning which may cause us to withdraw from a stimulus and so protect an injured body part. Unfortunately, pain often continues long after it has ceased to be a useful form of protection. Associated muscle spasm, atrophy, habitual postures, guarding and psychological factors all combine to make chronic pain a clinical state in itself.

Types of pain

Pain may be classified as somatogenic (acute or chronic), neurogenic or psychogenic. Chronic pain is traditionally said to last for more than six weeks, while acute pain is pain of sudden onset and lasts for less than six weeks. However, rather than distinct timescales, pain behavior is more appropriate as a classification.

Definition

Acute pain is traditionally said to have a sudden onset and lasts for less than six weeks, while chronic pain lasts for more than six weeks. Musculoskeletal pain is not usually well localized – the surface site where the pain is felt rarely correlates directly to injured subcutaneous tissue. Generally, the closer an injured tissue is to the skin surface, the more accurate the patient can be at localizing it.

Deep pain is normally an aching, ill-defined sensation. It can radiate in a characteristic fashion, and may be associated with autonomic responses such as sweating, nausea, pallor and lowered blood pressure. Pain referral usually corresponds to segmental pathways, most often dermatomes. The extent of radiation largely depends on the intensity of the stimulus, with pain traditionally said to radiate distally, and rarely to cross the mid-line of the body (Cyriax 1982). In the clinic, however, these rules, while a useful guide, are often not adhered to rigidly.

Neurogenic pain is different again. Compression of a nerve root gives rise to ill-defined tingling, especially in the distal part of the dermatome supplied by the nerve. This is a pressure reaction, which quickly disappears when the nerve root is released. Greater pressure often causes the tingling to give way to numbness. Compression or tension to the dural sleeve covering the nerve root gives severe pain, generally over the whole dermatome. In contrast, pressure on a nerve trunk is conventionally said to cause little or no pain, but results in a shower of 'pins and needles' as the nerve compression is released. Pressure applied

1 Healing

to a superficial nerve distally gives numbress and some tingling, with the edge of the affected region being well defined.

Irritability

Irritability may be defined as 'the vigour of activity which causes pain' (Maitland 1991). It is determined by the degree of pain which the patient experiences, and the time this takes to subside, in relation to the intensity of activity or mechanical stimulation. The purpose of assessing irritability is to determine how much activity (joint mobilization, exercise, and so on) may be prescribed without exacerbating the patient's symptoms.

An assessment of irritability may be made at the second treatment session. The amount of

movement which the patient was subjected to in the previous session is known, as is the discomfort that he or she feels now. These subjective feelings are then used to determine the intensity of the second treatment session. Similarly, at the beginning of each subsequent treatment session the irritability is again assessed.

Keypoint

Irritability is a measure of the amount of pain a patient experiences as a result of movement (including that of treatment). Irritability can be used to guide the type and intensity of treatment to avoid excessive post-treatment soreness.

Treatment note 1.2 Pain description in examination

During both the subjective examination and the objective examination (see Treatment Note 1.8, p. 53) the patient will usually describe pain as part of their experience. In addition to psychosocial factors (see below), both the type (nature) of pain and its behaviour are important factors in making an accurate clinical diagnosis, and a number of factors should be considered:

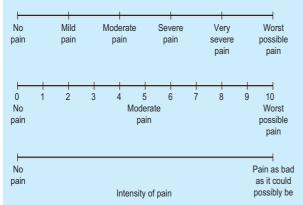
- When pain is decreasing, the condition is generally resolving; increasing pain suggests a worsening condition.
- Constant pain which does not change with time, alteration of static posture or activities may suggest a non-mechanical condition such as chemical irritation, tumours or visceral lesions.
- Where pain changes (episodic pain), the therapist should try to determine what activities make the pain worse (exacerbation) and what make it better (remission).
- The therapist should try to determine if the pain is associated with particular events (e.g. movements, visceral function), or time of day.

- Pain with activity which reduces with rest in general suggests a mechanical problem, irritating pain-sensitive structures.
- Morning pain which eases with movement may indicate chronic inflammation which takes time to build up and reduces with movement.

The description of pain itself may indicate the structure causing it (see Table 1.1) and the

Table 1.1 Pain descriptions and related structures

Type of pain			
Cramping, dull, aching, worse with resisted movement	Muscle		
Dull, aching, worse with passive movement	Ligament, joint capsule		
Sharp, shooting	Nerve root		
Sharp, lightning-like, travelling	Nerve		
Burning, pressure-like, stinging, with skin changes	Sympathetic nerve		
Deep, nagging, poorly localized	Bone		
Sharp, severe, unable to take weight	Fracture		
Throbbing, diffuse	Vasculature		


Source: Magee (2002) and Petty and Moore (2001) with permission.

Treatment note 1.2 continued

behaviour of the pain on physical examination clarifies the picture.

Recording pain

The intensity of pain may be recorded on a visual analogue scale (VAS). The patient is asked to indicate the pain description or number which best represents their pain. Where a 10 cm line is used the distance from the left of the scale to the point marked by the patient may be measured in millimetres and used as a numerical value (Fig. 1.5).

Figure 1.5 Visual analogue scales (VAS) used in pain description. From Petty and Moore (2001) with permission.

Red flags

It is important for the therapist to appreciate when pain and other symptoms may suggest serious pathology which requires medical investigation – so-called 'red flags' (Table 1.2). Where the patient has persistent pain and is generally unwell, the indication is that a pathology other than a musculoskeletal condition may exist. In addition, changes in bladder and bowel habits, alteration in vision or gross changes in gait all require further investigation.

Table 1.2 Red flags in sport examination indicating medical investigation

System/ possible pathology	Pain behaviour
Cancer	Persistent night pain
	Constant (24 hour) pain
	Unexplained weight loss (e.g. 4–6 kg in 10 days)
	Loss of appetite
	Unusual lumps or growths
	Sudden persistent fatigue
	Past history of carcinoma
Cardiovascular	Shortness of breath
	Dizziness
	Pain or feeling of heaviness in the chest
	Pulsating sensations in the body
	Discoloration in the feet
	Persistent swelling with no history of injury
Gastrointestinal/	Frequent or severe abdominal pain
genitourinary	Frequent heartburn or indigestion
	Frequent nausea or vomiting
	Change in bladder or bowel habits
	Unusual menstruation
Neurological	Changes in hearing
	Frequent or severe headache
	Problems in swallowing or changes in speech
	Gait disturbance, or problems with balance/coordination
	Drop attacks (fainting)

Source: Magee et al. (2002) and Waddell, G., Feder, G. and Lewis, M. (1997) Systematic reviews of bed rest and advice to stay active for acute low back pain. *British Journal of General Practice*, **47**, 647–652. With permission.